Devoir de contrôle N°1 3 ème Maths

Exercice N° 1 3 points

Répondre par vrai ou faux en justifiant votre réponse.

- La fonction $f(x) = \frac{x^2}{x^2 + 2}$ est bornée. 1
- 2 f une fonction définie sur un intervalle ouvert I, si |f| est continue sur I alors f est continue sur I.
- f une fonction continue sur [a;b] telle que f(a) < a.b et $f(b) > b^2$ alors il existe un réel $c \in [a;b]$ vérifiant f(c) = b.c.
- Le plan est muni d'un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$. \overrightarrow{u} et \overrightarrow{v} deux vecteurs tels que : $\|\overrightarrow{u}\| = \|\overrightarrow{v}\| = 2$ et $\|\overrightarrow{u} - \overrightarrow{v}\|^2 = 4\left(2 + \sqrt{3}\right)$. Alors l'angle formé par les deux vecteurs \overrightarrow{u} et \overrightarrow{v} est $\frac{5\pi}{6}$.

Exercice N° 2 5 points

A- Soit f la fonction définie par $f(x) = \sqrt{3x^2 - x^3}$.

- Déterminer l'ensemble de définition de f. 1
- Justifier que pour tout $x \in \mathbb{R}$, on a : $3x^2 x^3 = 4 (x-2)^2 (x+1)$. 2
 - En déduire que f admet un maximum sur [0; 3] que l'on précisera.

B-

Dans la figure ci-contre:

- □ [AB] est un segment de longueur 4.
- \Box H est un point de [AB] tel qeu AH = 1.
- \square M est un point de du segment [HB] tel que BM = x.
- \Box Γ est le demi cercle de diamètre [AM].
- \square La perpendiculaire à (AB) en H coupe Γ en D.
- a Justifier que $\overrightarrow{AD} \cdot \overrightarrow{AM} = AD^2$
 - En déduire que $AD = \sqrt{4 x}$.
 - Calculer alors DH.
- Déterminer alors la position du point M pour que l'aire du triangle BMD est maximale.

Exercice N° 3 5 points

Dans le graphique ci-dessous

 \mathscr{C}_f est la courbe représentative d'une fonction f définie sur l'intervalle [-4,9]

La droite d'équation x = -2 est une asymptote verticale à \mathcal{C}_f .

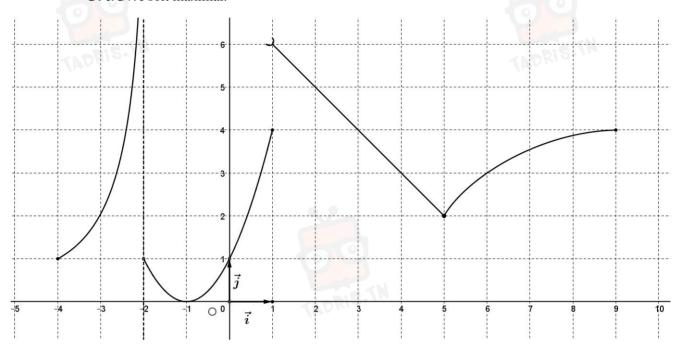
- Déterminer : 1
 - a Les intervalles sur lesquels f est continue.
 - L'image, par f, de chacun des intervalles : [1, 6], [-4, -2] et [-2; 2].
- Résoudre graphiquement les équations : E(f(x)) = 0 et f(E(x)) = 0 où E(x) désigne la partie entière de x. 2
 - Résoudre, dans l'intervalle [-2,9], l'inéquation $\sqrt{f(x)+1} \le \sqrt{5}$.

A www.Tadris.TN 2 55.635.666 2 26.222.159

- 3 Montrer que, l'équation $f(x) = -x^3$, admet au moins une solution dans l'intervalle [-1,1].
- 4 Pour tout $x \in [-2; 1]$, on donne $f(x) = x^2 + 2x + 1$ et on désigne par A(-2, -1) et M le point de \mathscr{C}_f d'abscisse x.
 - a Vérifier que $\overrightarrow{OA}.\overrightarrow{OM} = -x^2 4x 1$.
 - **b** Déterminer les coordonnées de M dans chacun des cas suivants :

Le triangle OAM soit rectangle en O.

 \overrightarrow{OA} . \overrightarrow{OM} soit maximal.



Exercice N° 4 7 points

On donne un parallélogramme ABCD de centre I tels que : AB = 2, $AD = 2\sqrt{2}$ et $\widehat{BAD} = \frac{3\pi}{4}$.

- 1 **a** Calculer $(\overrightarrow{AB} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$.
 - **b** En déduire que les vecteurs \overrightarrow{AI} et \overrightarrow{AB} sont orthogonaux.
 - **c** Faire une figure.
- Soit M un point de la droite (AB). On pose $\overrightarrow{AM} = x\overrightarrow{AB}$, avec $x \in \mathbb{R}$.
 - a Montrer que $\overrightarrow{IM} \cdot \overrightarrow{AD} = -2 4x$.
 - $b \quad \text{D\'eterminer alors le point } F \text{ de } (AB) \text{ tel que } (IF) \text{ est perpendiculaire } \grave{a} \text{ } (AD).$
 - c $\;\;$ Vérifier que F est le barycentre des points pondérés (A,-3) et (B,1)
- 3 Pour tout point M du plan, on pose $f(M) = MB^2 3MA^2$.

Soit \mathscr{E} l'ensemble des points M du plan tels que f(M) = k où k est un réel donné.

- a Montrer que $f(M) = -2MF^2 + 6$.
- **b** Discuter suivant le paramètre réel k la nature de l'ensemble **%**.
- 4 Soit \triangle l'ensemble des points M du plan tels que $\overrightarrow{DM} \cdot \overrightarrow{FB} = 6$.
 - a Vérifier que $I \in \Delta$.
 - **b** Déterminer alors l'ensemble Δ .
 - c Dans le cas où $\mathscr E$ est un cercle, déterminer k pour que $\mathscr E$ soit tangent à Δ .

